Skip to main content

My take on a nixie clock

As a present I decided to build a nixie tube clock. It was essential to ditch my close-enough attitude and make it look as good as possible. For me the simplest way to complete this idea was to use a microcontroller. I am not cool enough to build a clock out of discrete logic, maybe in the future.

Nixie2I had couple of nixie tubes lying around, I ordered some more to have a total of six. So the clock consist of an Arduino Nano, RTC DS3231, nixie tubes - IN-14 and a power supply. From the start I knew the biggest challenge is building the enclosure. I learned that the easiest way to drive these nixie tubes is with a driver called - К155ИД1.

It’s a binary to decimal decoder and it works quite elegantly. Depending on the binary input it enables the right output.

chrome_2016-02-25_17-26-59It does all the heavy lifting. And then I used three shift registers to drive all the drivers.

In addition I bought a nixie tube power supply that supplies the 170v I need. I could have used 220v wall power but I do not trust myself enough to use that, especially when giving it away.

I wanted this thing to be everything my clock is not.

  • RTC keeps the time even at complete power loss.

  • Simple controls - possible to go back in time~.

  • No alarm function - no need for broken glass.


It is quite straight forward - not too many passive components.


I wanted this thing to be in proportions and as small as possible. In order to achieve this, I decided to sandwich the two PCBs together. I have made many PCBs but only single sided ones. Now was the first time to try to make my own double sided board. It came out okay, did not have to fix many traces. Making double sided boards with the "toner transfer" method is tricky.


The back panel consist of three buttons and a power jack. One click adds a unit of time and when holding it down it removes the desired unit.



I liked the idea of making it out of metal/metallic materials but I don’t have the necessary equipment nor the tools. I decided to make it out of wood. To make it more interesting I routed out all the excess material, instead  of making it out of 4 walls. It looks like a lump of wood which I quite like. It turned out great.

A bit more artistic representation:




Popular posts from this blog

My take on the PA0RDT Mini Whip antenna.

I like shortwave radio because you can receive signals from all over the world, also there are all kinds of mysterious signals to explore.

In the grand scheme - the lower the frequency, the bigger antenna you would need. Well, there are all kinds of antenna designs but I like to think like that way. For example, I have a 27 MHz dipole on my roof that is around 5.3 meters long. If I wanted to listen to lower frequencies ~ around 3 MHz, for optimal performance I would need around 50 meter antenna, so using dipole for lower frequencies is not very space efficient, especially if you do not have any room.

So I decided to build the Mini Whip antenna. It is popular, simple to build and on paper receives frequencies from 10 kHz to 30 MHz, and also it is super tiny.

There are some variations between different designs, but the basic idea is the same.

The schematic I followed.

During my tests it performed well, I was able to receive DCF77 signal for the first time. All other bands seemed to work as w…

RFID experiments

Radio-frequency identification (RFID) is a way to use electromagnetic fields to send and receive data wirelessly. The system consists of two parts: reader and a tag.  Tags can be passive or active. I think the most popular are passive tags. Meaning, there are no batteries needed, the power comes from the reader. The reader constantly sends out an interrogation signal and when a tag absorbs the energy and powers up, it radiates back information from the embedded chip.

Then it divides further - different frequencies, generations, encryptions etc.

Also one popular part is NFC (Near Field Communication) which has better security and other improvements. Latest phones usually come with NFC read/write capabilities built in.  So you can pay with your phone or touch phones together to share information. A lot of possibilities.

RFID/NFC is quite popular in our commercial world.

Anti-theft – stores use it to stop people stealing stuff.
Tracking people - putting tags inside shoes to track people, some…